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The Characteristic Impedance of a Slotted Coaxial Line

R. E. COLLIN{

Summary—The propagation of a second type of TEM mode in a
slotted coaxial line is analyzed. The characteristic impedance of the
slotted line is evaluated by means of variational expressions giving
upper and lower bounds to the true value. A two term approximation
to the charge distribution and a one term approximation to potential
distribution give results accurate to within +2 per cent. Curves of
characteristic impedance against angular slot width are presented.

INTRODUCTION

N A SLOTTED coaxial line as illustrated in Fig, 1
I[ two types of TEM modes may propagate. The first

is a perturbed fundamental coaxial line mode. If the
slots are narrow, then apart from a small amount of
fringing of the field in the region of the slots, the field is
confined entirely to the region between the inner and
outer conductors. The second type is a mode with the
electric field lines of force crossing the symmetry plane
everywhere at right angles. Unlike the first type of
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Fig. 1—Field distribution of second type of TEM mode illustrating
excitation of dipole wings. electric field. ------ magnetic field.

TEM mode, the field of this second mode extends into
all of the space surrounding the coaxial line. The exist-
ence of this mode is of fundamental importance in the
slotted coaxial line dipole antenna feed.! It is this mode
that excites currents on the dipole wings and causes the
dipole to radiate. This mode should not be confused
with a perturbed second order coaxial line mode and in
practice is usually excited by short circuiting inner con-
ductor to outer conductor by a short circuiting post lo-
cated in plane perpendicular to symmetry plane.

T Canadian Armament Research and Development Establish-
ment, Valcartier, Quebec.

! 8. Silver, “Microwave antenna theory and design,” McGraw-
Hill Bk. Co., New York, 1949. Chapter 8, Sec. 4.

This paper is primarily concerned with the evaluation
of the characteristic impedance of the slotted coaxial
line for this second type of transmission line mode. A
rigorous solution in closed form has not been found.
However by a variational method similar to that used
in waveguide problems? upper and lower bounds to the
characteristic impedance have been obtained. The
procedure used is capable of giving a result of as high a
degree of accuracy as desired. The upper bound to the
characteristic impedance is found from a variational
expression involving the charge on the outer conductor
while the lower bound is obtained from a variational
expression involving the potential distribution in the
slotted regions. Due to the symmetry of the problem it
is only necessary to consider the solution to the reduced
problem illustrated in Fig. 2 and consisting of the two
half coaxial cylinders above the symmetry plane and an
infinite conducting plane placed coincident with the
symmetry plane. The field distribution below the sym-
metry plane is the mirror image of that above. For this
reason the current flowing on the lower half coaxial
cylinders will be directed oppositely to that flowing on
the upper half cylinders. There will be no net current
flow on the center conductor; the current flowing down
the line on one outer half cylinder and back on the
other. It is seen that the slotted coaxial line is thus a
balanced three wire line as far as this second type of
TEM mode is concerned.
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Fig. 2—Reduced problem obtained by image theory.

UprPER BOUND 10 CHARACTERISTIC IMPEDANCE

For a TEM mode the field distribution in the trans-
verse plane is a solution of Laplace’s equation and may
therefore be derived from an appropriate potential or
stream function. In the cylindrical coordinate system
7, 8, 3 the transverse electric and magnetic field com-
ponents are related as follows:?

—jopl, = kE,, jouHg = RE.,,

2 J. W. Miles, “The equivalent circuit for a plane discontinuity in
a cylindrical waveguide,” Proc. IRE, Vol. 34, p. 728; October, 1946.

8 MKS units are used and the time factor ¢t is dropped for con-
venience.
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inner half cylinder and ground plane, then the electric
field may be found from the following relation:

E = —grad ¢

In order that the outer half cylinder shall be at a poten-
tial ¢ there must be a distribution of charge o (f) on
the hall cylinder. This charge distribution is propor-
tional to the discontinuity of the normal electric field
at » =b and hence is proportional to the discontinuity in
the tangential magnetic field at r=54 and thus propor-
tional to current flowing on line. Explicitly one has:
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where [ is the total current flowing and Q is the total
charge on the upper half cylinder.

The characteristic impedance Z, measured between
the two outer half cylinders is 2¢/I and is equal to

I =

2 - 1
2o oo 1

Q Cv
where C is the total capacity of the slotted coaxial line
per unit length and v is the velocity of light in the sur-
rounding medium. Thus it suffices to determine the
capacity C in order to evaluate Z,.
Consider first of all solution of following equation:

ViG(r, 9, 0) = — ils(r — 550 — ) (1)

which defines the Green’s function G for the above
problem. The delta functions have the property that
J8(r —b)dr equals unity if the interval of integration in-
cludes the point & and equals zero otherwise. The
Green’s function is subject to the boundary conditions
that it vanishes on the inner half cylinder and ground
plane, is continuous with a discontinuous normal de-
rivative at » =0, and is regular at infinity. The Green’s
function is thus seen to be the potential due to unit
charge located at b, 8’. A suitable form for Green’s func-
tion is readily found by standard methods,* giving

4 P. M. Morse and H. Feshback, Methods of theoretical physics,
McGraw-Hill Book Co., New York, 1953.

a a

By the superposition theorem the potential due to a
charge distribution o(8) at »="5 is:

8(r, 6) = f T @G, 0, 8) " 3)

Imposing the boundary condition that ¢=¢¢ on the
outer half cylinder gives the following integral equation
whose solution determines the charge distribution ¢(f):

o = f T @G, 0, 07)d8. @)

To obtain a variational expression for Z, multiply the
above integral equation by ¢(f) and integrate over
a=0=7—a. Introducing the value of Z, given by

20

vf W—aa((?)d(?

and dividing both sides by [[,**0(8)d6|* gives:
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The value of Z; as given by this expression is easily
shown to be stationary with respect to arbitrary first
order variations in the charge distribution ¢(#) and
hence is the required variational expression. Further-
more this expression is a positive definite quadratic
form so the stationary value is an absolute minimum for
the correct form of ¢(f) and will therefore give an upper
bound for the impedance Z,. A suitable set of functions
in which to expand ¢(6) that will converge to the rigor-
ously correct solution are the following cosine functions:

27s(f — a)
Z Cs COS

$=0 T — Za

()
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The stationary value of Z, is obtained by substituting a
finite number of terms of the above series into the vari-
ational expression, setting all the partial derivatives
d/dc, equal to zero, solving the resultant equations for
the ¢, and finally substituting back into the variational
expression and evaluating Z,. There is no loss in gener-
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ality by taking ¢, equal to unity since Z, depends only
on the functional form of ¢(8). Using constant term and

one cosine term following result is obtained for Z,:
%
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for the total energy stored in the field per unit length
of line. Now 2C¢¢?= W, and hence Z,=¢¢*/vW,.. The

coefficients a, are given by Fourier analysis as follows:

cos? ne l:l + ¢

n?(r — 2a)? :]2

ni(r — 20)% — 472

ohms (6)

where
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The above series are quite suitable for numerical com-
putation as the terms decrease as #* and the summa-
tions are over odd integers only.

Lower BouND T0 THE CHARACTERISTIC IMPEDANCE

In order to obtain an estimate of the error involved in
calculating Z, from the previous expression it is necessary
to develop an alternative expression that will give a
lower bound to Z;. This may be done by solving the
original problem in terms of the potential distribution
in the slots. A suitable expansion of the potential func-
tion is the following:

{ 0

4
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If the potential in the region 0 £0Za, » =0 were known,
then the coefficients a, could be uniquely determined by
Fourier analysis. However since the capacity C is re-
quired it will be sufficient to obtain a variational expres-
sion involving this unknown potential distribution ¢(8)
and which gives C as a stationary quantity. Since the
electrostatic energy stored in the field is known to be a
minimum and also proportional to ¢o? C it is clear that a
variational expression for C can be developed by calcu-
lating the electrostatic energy in the field. The electric
energy is given by:

W, = gf Exdy = —;—f (grad ¢)%dv

Substituting for ¢ from (7), taking the gradient and
integrating over the whole r, 6 plane gives:

Te 2 . b b . b
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since the potential reduces to ¢, on the outer cylinder.
Substituting into the expression for W, gives:
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To show that 1/Z, is stationary with respect to arbitrary
first order variations in the functional form of ¢, con-
sider the variation in W, due to a variation 8¢ in ¢, thus:

86 /2 © b
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Since ¢ =¢, for e £ =w—a the above result reduces to:
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For the first variation in 6 W, to vanish

o

w2
Z 7 (1 + coth n In i) sin nof ¢ sin #0do
n=1,3«++ a 0
must equal zero over the region of the slots. This equa-
tion is also the condition that must be imposed on ¢ in
order that the normal electric field in the slots be con-
tinuous and hence W, is identically zero. The expres-



1956

sion for W, is a positive definite quadratic form and
therefore vyields a lower bound to the characteristic
impedance Z,. A suitable form for the potential distri-
bution that will result in a closed form for Z, is

0

$po—> 0=
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Substituting in the expression for Z, and performing the
integration gives
1 00338 = b\ sin? no
— > {1+ cothnln - ohms.

1,300 a n

Z() CU2
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The summation of the above series is carried out in the
Appendix and gives finally

296 ohms
Zy = . (12)

hd b gin? n
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a
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The series converges rapidly since coth # In b/a ap-
proaches unity rapidly. Higher order approximations to
Z, may be obtained with the following series expansion
for ¢(6), ‘

s

o s 7
o(6) = ¢o[~ + chsin——:l for0=260=<oc.
4

(04 s=1

NUMERICAL EXAMPLE

Upper and lower bounds to the characteristic imped-
ance Z, as obtained from (6) and (12) have been evalu-
ated for the particular case of b/a=2.6. Curves of Z,
vs slot angle 2« are plotted in Fig. 3 for a range of 2«
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Fig. 3—Variation of characteristic impedance with slot angle for
b/a=2.6. (a) Two term approximation to upper bound. (b) One
term approximation to lower bound. (c) Average of (a) and (b).
(e) Three term approximation to upper bound. {{) Two term ap-
proximation to lower bound.

from 0° to 30°. The average values of Z, as obtained
from (6) and (12) are also given. The value of Z, for
200=20° was also evaluated by using a three term ap-
proximation to the upper bound and a two term ap-
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proximation to the lower bound. This shows that the
average value of Z, given in Fig. 3 is probably accurate
to within +2 per cent for most of the range of « con-
sidered. Characteristic impedance is relatively inde-
pendent of ratio of b/a, provided ratio is greater than 3.
In Fig. 4 average value of characteristic impedance is
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Fig. 4—Variation of characteristic impedance with slot angle
for b/a>6.

plotted as a function of slot angle for the case when ratio
of outer to inner radii is large; i.e., (6/a) > 6. This value
of Zo is average value obtained from (6) and (12) with
coth # In b/a replaced by unity.

A plot of the charge distribution obtained for the
three term approximation to the upper bound for Zj
shows that the charge, and hence the current, is very
heavily concentrated in the region of the slots.

CONCLUSIONS

The propagation of a second type of TEM mode on a
slotted coaxial line has been discussed. In particular
variational expressions giving upper and lower bounds
to the characteristic impedance of the slotted line have
been derived. The procedure developed is applicable
generally and may be used to evaluate characteristic
impedance of other structures occurring in practice.

For a generalized cylindrical transmission line the
equivalent electrostatic problem is two dimensional.
Let Co and C; be two open or closed curves coincident
with the conducting surfaces of the line. Let G(, #') be
the Green’s function for the space surrounding Cy in the
absence of C; and such that G vanishes on Cy; L.e., G is
the potential due to a unit charge at #’ and such that the
potential vanishes on Cy. The upper bound to the char-
acteristic impedance of the line is then given by

f j; G(r, r)a(r)o(r")drdy’
o ‘ -

7)< f a(r)dr>2

where o(r) is the charge distribution on Cj. The lower
bound to Z; may be found by minimizing the volume
integral of the electrostatic energy density of the field.

1
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APPENDIX

The series to be summed is
i b\ sin? na
> (1+cothpln—)—.
n=1,8+ - a 78
This series may be written as:
*. sin? na = b sin? na
2 > —+ > <cothn1n—~ - 1)———-
1,3--- '}’L3 1,8--- a 113

where the second series is rapidly converging and in the
form of a correction term. Integrating the well known
geometric series

0
E eZyna o
1
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once with respect to « and taking the real part gives

2. cos 2na

) D —

1 n

— In 2 sin a.

Replacing 2a by 7w—2a and adding and subtracting
series, it is readily deduced that
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cos 2ne
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Integrating this series twice with respect to a gives
* sin? na @«
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For a limited range of «, In tan ¥ may be replaced by
the first few terms of its Maclaurin’s expansion and the
integration may then be performed. One has
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The integration gives
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For a £.5 the following result is obtained:
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Broadband Ferrite Microwave Isolator*
P. H. VARTANTANY, J. L. MELCHORY, anp W. P. AYRESt

Summary—A new type broadband unidirectional transmission
line has been built utilizing the difference in energy distribution be-
tween two counter-rotating circularly polarized waves in a circular
waveguide containing a ferrite. This principle of isolation is different
from those which have been used previously.

A large difference is observed in the energy distribution of two
counter-rotating TE:; modes in a ferrite loaded circular waveguide.
A ferrite rod magnetized along its axis presents an effective rf per-
meability of approximately two for the mode rotating in a negative
screw sense with respect to the direction of magnetization. For the
positive sense of rotation the effective rf permeability becomes very
small and negligible energy is transmitted through the ferrite rod.

Unidirectional transmission characteristics were achieved by add-
ing quarter wave plates before and after the ferrite rod and inserting
an absorber into the ferrite. For the direction of propagation for
which the quarter wave plate converts from a linear input to a posi-
tive circular rotation the positive wave tends to go around the ferrite
with small loss. For the other direction of propagation the quarter
wave plate converts the linear input wave to a negative wave which
tends to concentrate in the ferrite and is absorbed.

Based on the principles described, an isolator was constructed
which gives better than 30 db isolation over the range 8 to 11 kmec.

* This work was performed under Signal Corps Contract No.
DA-36-039-sc-31435,

t Electronic Defense Lab. of Sylvania Electric Products Inc.,
P.O. Box 205, Mountain View, Calif,

The insertion loss is less than 2 db from 8 to 10.5 kme and increases
to 3 db at 11 kmc. The complete unit is 10} inches long and weighs
2% pounds.

The main advantage of this isolator over present transverse field
rectangular waveguide isolators and Faraday rotation isolators is its
improved bandwidth. Other advantages are that the isolator is not
sensitive to changes in magnetic field and it operates with a readily
obtainable ferrite at low magnetic fields. Its vswr over the band is
less than 1.2. The principle of this isolator is applicable to other fre-
quency bands.

INTRODUCTION

O KEEP abreast of current systems develop-

ments, both manufacturers and users of micro-

wave components have felt the need for broad-
band microwave isolators. In attempts to make practical
microwave isolators, {errites have been heavily exploited
in both circular and rectangular waveguide geometries.
Effects of differential phase shift and differential
resonance absorption for two directions of wave propa-
gation are widely used as the basis for isolation in both
waveguide geometries. In most reported cases, how-
ever, the bandwidth of these devices does not exceed ten
per cent.



