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The Characteristic Impedance of a Slotted Coaxial Line
R. E. COLLIN~

Summary—The propagation of a second type of TEM mode in a

slotted coaxial line is analyzed. The characteristic impedance of the
slotted line is evaluated by means of variational expressions giving

upper and lower bounds to the true value. A two term approximation

to the charge distribution and a one term approximation to potential

distribution give resalts accurate to within +2 per cent. Curves of
characteristic impedance against angular slot width are presented.

INTRODUCTION

I
N A SLOTTED coaxial line as illustrated in Fig. 1

two types of TEM modes may propagate. The first

is a perturbed fundamental coaxial line mode. If the

slots are narrow, then apart from a small amount of

fringing of the field in the region of the slots, the field is

confined entirely to the region between the inner and

outer conductors. The second type is a mode with the

electric field lines of force crossing the symmetry plane

everywhere at right angles. Unlike the first type of

n

SYMMETRY

PLANE

Fig. l—Field distribution of second type of TEM mode illustrating
excitation of dipole wings. —— electric field. ------ magnetic field.

TEM mode, the field of this second mode extends into

all of the space surrounding the coaxial line. The exist-

ence of this mode is of fundamental importance in the

slotted coaxial line dipole antenna feed. 1 It is this mode

that excites currents on the dipole wings and causes the

dipole to radiate. This mode should not be confused

with a perturbed second order coaxial line mode and in

practice is usually excited by short circuiting inner con-

ductor to outer conductor by a short circuiting post 10-

cated in plane perpendicular to symmetry plane.

~ Canadian Armament Research and Development Establish-
ment, Valcartier, Quebec.

1 S. Silver, “Microwave antenna theory and design, ” McGraw-
Hill Bk. Co., New York, 1949. Chapter 8, Sec. 4.

This paper is primarily concerned with the evaluation

of the characteristic impedance of the slotted coaxial

line for this second type of transmission line mode. A

rigorous solution in closed form has not been found.

However by a variational method similar to that used

in waveguide problemsz upper and lower bounds to the

characteristic impedance have been obtained. The

procedure used is capable of giving a result of as high a

degree of accuracy as desired. The upper bound to the

characteristic impedance is found from a variational

expression involving the charge on the outer conductor

while the lower bound is obtained from a variational

expression involving the potential distribution in the

slotted regions. Due to the symmetry of the problem it

is only necessary to consider the solution to the reduced

problem illustrated in Fig. 2 and consisting of the two

half coaxial cylinders above the symmetry plane and an

infinite conducting plane placed coincident with the

symmetry plane. The field distribution below the sym-

metry plane is the mirror image of that above. For this

reason the current flowing on the lower half coaxial

cylinders will be directed oppositely to that flowing on

the upper half cylinders. There will be no net current

flow on the center conductor; the current flowing down

the line on one outer half cylinder and back on the

other. It is seen that the slotted coaxial line is thus a

balanced three wire line as far as this second type of

TEM mode is concerned.

PLANE

Fig. 2—Reduced problem obtained by image theory,

UPPER BOUND TO CHARACTERISTIC IMPEDANCE

For a TEM mode the field distribution in the trans-

verse plane is a solution of Laplace’s equation and may

therefore be derived from an appropriate potential or

stream function. In the cylindrical coordinate system

r, 0, z the transverse electric and magnetic field com-

ponents are related as follows:3

–jw/JH, = kEg, jJ,UHO = kE,,

~ J. W. Miles, “The equivalent circuit for a plane discontinuity in
a cylindrical waveguide, ” PROC. IRE, Vol. 34, p. 728; October, 1946.

a M KS units are used and the time factor W ~ is dropped for con-
venience.
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where
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The inrler and outer radii of the coaxial cylinder are

taken as “a” and “b” respectively and the angular slot

width as 2a. If ~(r, 6) is the potential distribution in the

space surrounding the half cylinders when the outer

half cylinder is held at a potential @Owith respect to the

inner half cylinder and ground plane, then the electric

field may be found from the following relation:

E=–grad4

In order that the outer half cylinder shall be at a poten-

tial do there must be a distribution of charge u (0) on

the half cylinder. This charge distribution is propor-

tional to the discontinuity of the normal electric field

at r = b and hence is proportional to the discontinuity in

the tangential magnetic field at r = b and thus propor-

tional to current flowing on line. Explicitly one has:

where 1 is the total current flowing and Q is the total

charge on the upper half cylinder.

The characteristic impedance Z. measured between

the two outer half cylinders is 2@0/1 and is equal to

where C is the total capacity of the slotted coaxial line

per unit length and o is the velocity of light in the sur-

rounding medium. Thus it suffices to determine the

capacity C in order to evaluate ZO.

Consider first of all solution of following equation:

V’G(r, 6, 8’) = – ~ 6(Y – b)ti(e – O’) (1)
e

which defines the Green’s function G for the above

problem. The delta functions have the property that

~ti(r – b)d~ equals unity if the interval of integration in-

cludes the point b and equals zero otherwise. The

Green’s function is subject to the boundary conditions

that it vanishes on the inner half cylinder and ground

plane, is continuous with a discontinuous normal de-

rivative at r = b, and is regular at infinity. The Green’s

function is thus seen to be the potential due to unit

charge located at b, 0’. A suitable form for Green’s func-

tion is readily found by standard methods,4 giving

~ P. M. Morse and H. Feshback, Methods of theoretical physics,
McGraw-Hill Book Co., New York, 1953.
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By the superposition theorem the potential due to a

charge distribution u(O) at r = b is:

f

n——c

C)(Y, 0) = cT(o’)G(r, 0, 8’)(%’ (3)
a

Imposing the boundary conditic,n that @ = q50 on the

outer half cylinder gives the following integral equa Lion

whose solution determines the charge distribution CT(O):

40=1 a(/3’)G(b, 0, O’)U%’. (4)

To obtain a variational expression for ZO multiply the

above integral equation by a(d) and integrate over

a sO sr—a. Introducing the value of ZO given by

240

s.—c-i

v a(0)d6
a

and dividing both sides by [~am–~o(@)d6’ ] 2 gives:

2 Ss‘7—0.— G(b, 6, 0’)a(@u(O’)6kki$’

Va

Zo= (5)

[J:a.(o,d,y

The value of ZO as given by this expression is ealsily

shown to be stationary with respect to arbitrary first

order variations in the charge distribution cr(0) and

hence is the required variational expression. Furtherm-

ore this expression is a positive definite quadratic

form so the stationary value is an absolute minimum for

the correct form of a(~) and will therefore give an upper

bound for the impedance ZO. A suitable set of functions

in which to expand u(O) that will converge to the rig-or-

ously correct solution are the following cosine functions:

27rs(6 -- a)
~ c. Cos —— .
.s=O 7r — 20!

The stationary value of Z. is obtained by ~substituting a

finite number of terms of the above series into the vari-

ational expression, setting all the partial derivatives

s3/dc. equal to zero, solving the resultant equations for

the c, and finally substituting back into the variational

expression and evaluating ZO. There is no loss in gener-
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ality by taking COequal to unity since ZO depends only for the total energy stored in the field per unit length

on the functional form of u(O). Using constant term and of line. Now 2 C@02= We and hence 20= @02/v W.. The

one cosine term following result is obtained for ZO: coefficients a. are given by Fourier analysis as follows:
9.

[ 1
n2(7r — 2a)2 2

COS2?&2! 1 + c1
1920

Zo= 5
t22(71-—2a)2 — 47r2

ohms (6)
(T – 2a)’ ~=,,,...

[

b
tZ3 1 + coth n in —

a 1
where

f
COS2 ‘nCY

( )‘=1’3””’ n 1 + coth n In! [n2(m — 2a)2 — 4~2]
a

G~=—

i

[?2COS2?2CI][T – 2CI]2

n=l ,3...

( )

1 + coth n in 2 [~z2(m – 2a)2 – 4T2]2
a

The above series are quite suitable for numerical com-

putation as the terms decrease as n3 and the summa-

tions are over odd integers only.

LOWER BOUND TO THE CHARACTERISTIC IMPEDANCE

In order to obtain an estimate of the error involved in

calculating ZOfrom tke previous expression it is necessary

to develop an alternative expression that will give a

lower bound to Zo. This may be done by solving the

original problem in terms of the potential distribution

in the slots. A suitable expansion of the potential func-

tion is the following:

f ~ an sin nO sinh n in ‘, 7 ~ b

+(7, %) = ‘=l!””’
a

(7)

~ an sinh +, in ~sinyzOe-” ‘n ‘b, r > b
, n=l,3. . . a

If the potential in the region O S 9s a, r = b were known,

then the coefficients an could be uniquely determined by

Fourier analysis. However since the capacity C is re-

quired it will be sufficient to obtain a variational expres-

sion involving this unknown potential distribution 4(O)

and which gives C as a stationary quantity. Since the

electrostatic energy stored in the field is known to be a

minimum and also proportional to +02 C it is clear that a

variational expression for C can be developed by calcu-

lating the electrostatic energy in the field. The electric

energy is given by:

s sWe = ~ E’dv = ~ (grad 4)2dv

Substituting for ~ from (7), taking the gradient and

integrating over the whole Y, O plane gives:

b“
a.~sinhnln —=

2 s@sin n%dO
a o

[s. f 9r/2

=2 + sin n0d6 + do sin n@dO
o . 1

since the potential reduces to do on the outer cylinder.

Substituting into the expression for We gives:

h *
2.–1 . _

z fi(l + coth n in ~)
@02 n=l,3. . . a

(s7[2

)

~ sin nOd9 2. (9)
o

To show that l/ZO is stationary with respect to arbitrary

first order variations in the functional form of ~, con-

sider the variation in W. due to a variation 6+ in +, thus:

s7r/2

sin nO 1+sin node do.
o

Since ~ =+0 for a S9 ~~–a the above result reduces to:

slr[2

sin nO 1q5sin n9d9 dO.
o

For the first variation in 8 We to vanish

9r/2

~ n (1 + Coth n h ~) sin w6’Jo d sin n8d%
n=l,3 . . .

must equal zero over the region of the slots. This equa-

tion is also the condition that must be imposed on qi in

order that the normal electric field in the slots be con-

tinuous and hence 13W. is identically zero. The expres-
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sion for We is a positive definite quadratic form and

therefore yields a lower bound {o the characteristic

impedance 20. A suitable form for the potential distri-

bution that will result in a closed form for ZO is

(

& ()~~~a.

@(O, b) = a (lo)

$0, ~~o~~.

\ ~

Substituting in the expression for 20 and performing the

integration gives

1 .00338 w
x(

b sin2 w
—. .—

)
l+cothnln —

20 C# ~,~...

~ ohms. (11)
a

The summation of the above series is carried out in the

Appendix and gives finally

296 OhIIM

20 =

(

. (12)

)

sinz no.
1.5–lna+ ~ cothnln~- 1 —

1,3 . . . a ~3a2

The series converges rapidly since coth ?Z In b/a ap-

proaches unity rapidly. Higher order approximations to

20 may be obtained with the following series expansion

for @(O),

NUMERICAL EXAMPLE

Upper and lower bounds to the characteristic imped-

ance 20 as obtained from (6) and (12) have been evalu-

ated for the particular case of b/a= 2.6. Curves of 20

vs slot angle 2a are plotted in Fig. 3 for a range of 2c2

8 50 I ! t , 1 I I
5 10 !5 20 25 30

ANGULAR SLOT WIDTH 2= IN DEGREES.

Fig. 3—Variation of characteristic impedance with slot angle for
b/a =2.6. (a) Two term approximation to upper bound. (b) One
term approximation to- lower bound. (c) Average of (a) and (b).
(e) Three term approximation to upper bonnd. (f) Two term ap-
proximation to lower bound.

from 0° to 30°. The average values of 20 as obtained

from (6) and (12) are also given. The value of 20 for

2a= 20° was also evaluated by using a three term ap-

proximation to the upper bound and a two term ap-

proximation to the lower bound. This shows that the

average value of Z. given in Fig. 3 is probably accurate

to within + 2 per cent for most of the range of a con-

sidered. Characteristic impedance is rel~tively inde-

pendent of ratio of b/a, provided ratio is greater than 3.

In Fig. 4 average value of characteristic impedance is

!:L.~
5 10 15 20 25

ANGULAR SLOT WIDTH 2- IN DE GF!EES.

Fig. 4—Variation of characteristic impedance with slot angle
for b/a >6.

plotted as a function of slot angle for the CaSe when ratio

of outer to inner radii is large; i.e., (b/a) >6. This value

of ZO is average value obtained from (6) and (12) with

coth n In b/a replaced by unity.

A plot of the charge distribution obtained for the

three term approximation to the upper bound for ZO

shows that the charge, and hence the current, is very

heavily concentrated in the region of the slots.

CONCLUSIONS

The propagation of a second type of TEM mode on a

slotted coaxial line has been discussed. In particular

variational expressions giving upper and lower bounds

to the characteristic impedance of the slotted line have

been derived. The procedure developed is applicable

generally and may be used to evaluate characteristic

impedance of other structures occurring in practice

For a generalized cylindrical transmission line the

equivalent electrostatic problem is two dimensional.

Let CO and Cl be two open or closed curves coincident

with the conducting surfaces of the line. Let G(r, Y’) be

the Green’s function for the space surrounding CO in the

absence of Cl and such that G varnishes on CO; i.e., G is

the potential due to a unit charge at # anc( such that the

potential vanishes on Co. The upper bound to the char-

acteristic impedance of the line is then given by

SsG(r, Y’)u(Y) u(r’)ddr’

Z. =

“(s )
2

v u(r)dr

c1

where u(r) is the charge distribution on Cl. The lower

bound to 20 may be found by rninirnizing the volume

integral of the electrostatic energy density of the field.



8 IRE TRANSACTIONS—MICROWAVE AND TECHNIQUES January

APPENDIX

The series to be summed is

cc

=( b sinz w

)
l+coth;zln — —.

n=l,3 . . . a ?23

This series may be written as:

sin2 ncY

25
( )

~+ S cothvh: --l u
1,3 . . . 1,3 . . . a }23

where the second series is rapidly converging and in the

form of a correction term. Integrating the well known

geometric series

.

1

once with respect to a and

Cos 2na
+ =-

1 — ~zjc

aking the real part gives

– in 2 sin a.u
1 H

Replacing 2a by r – 2a and adcling and subtracting

series, it is readily deduced that

Integrating

Cos 2110!
2 5——–

. – in tan a.
~,~... 11

this series twice with respect to a gives

sinz 17a

~~=s”sr~ntanydydx.
o 0

For a limited range of a, in tan y may be replaced by

the first few terms of its Maclaurin’s expansion and the

integration may then be performed. One has

7Y4

lntany= lny+~+ m+....

The integration gives

5 ‘* =(1.5 –lna)~–~ –....
1,3. . . )23

For a ~.5 the following result is obtained:

( )= (1.5 – in .).’ + ~ coth }tln~ – 1 =.
1,3 a ?L3

Broadband Ferrite Microwave
P. H. VARTANIAN~, J. L. MELCHOR~, AND W.

Summary—A new type broadband unidirectional transmission
line has been built utilizing the cliff erence in energy dktribution be-
tween two counter-rotating circularly polarized waves in a circular

waveguide containing a ferrite. Thk principle of isolation is cliff erent
from those which have been used previously.

A large cliff erence is observed in the energy distribution of two

counter-rotating TE1l modes in a ferrite loaded circular wavegnide.
A ferrite rod magnetized along its axis presents an effective rf per-
meability of approximately two for the mode rotating in a negative

screw sense with respect to the dkection of magnetization. For the
positive sense of rotation the effective rf permeability becomes very
small and negligible energy is transmitted through the ferrite rod.

Unidirectional transmission characteristics were achieved by add-
ing quarter wave plates before and after the ferrite rod and inserting
an absorber into the ferrite. For the duection of propagation for
which the quart er wave plate converts from a linear input to a posi-
tive circular rotation the positive wave tends to go around the ferrite
with small loss. For the other direction of propagation the quarter
wave plate converts the linear input wave to a negative wave which

tends to concentrate in the ferrite and is absorbed.
Based on the principles described, an isolator was constructed

which gives better than 30 db isolation over the range 8 to 11 kmc.

* This work was performed under Signal Corps Contract ?io.
DA-36-039-sc-31435.

t Electronic Defense Lab. of Sylvania Electric Products Inc.,
P.O. Box 205, Mountain View, Calif.

Isolator*
P.AYRES~

The insertion loss is less than 2 db from 8 to 10.5 kmc and increases

to 3 db at 1I kmc. The complete unit is 10+ inches long and weighs
2; pounds.

The main advantage of this isolator over present transverse field

rectangular waveguide isolators and Faraday rotation isolators is its

improved bandwidth. Other advantages are that the isolator is not

sensitive to changes in magnetic field and it operates with a readily
obtainable ferrite at low magnetic fields. Its vswr over the band is
less than 1.2. The principle of this isolator is applicable to other fre-

quency bands.

INTIt ODUCTION

T

O KEEP abreast of current systems develop-

ments, both manufacturers and users of micro-

wave components have felt the need for broad-

band microwave isolators. In attempts to make practical

microwave isolators, ferrites have been heavily exploited

in both circular and rectangular waveguide geometries.

Effects of differential phase shift and differential

resonance absorption for two directions of wave propa-

gation are widely used as the basis for isolation in both

waveguide geometries. In most reported cases, how-

ever, the bandwidth of these devices does not exceed ten

per cent.


